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The stability properties of the laminar Kolmogorov flow of a viscoelastic Oldroyd-B
fluid are investigated both analytically and numerically. Linear stability with respect
to large-scale perturbations is studied by means of multiple-scale analysis. This
technique yields an effective diffusion equation for the large-scale perturbation where
the effective (eddy) viscosity can be computed analytically. Stability amounts to the
positive definiteness of the eddy-viscosity tensor as a function of the Reynolds and
the Deborah numbers. Two main results emerge from our analysis: (i) at small fluid
elasticity, the flow is more stable than in the Newtonian case; (ii) at high elasticity,
the flow is prone to elastic instabilities, occurring even at vanishing Reynolds number.
The hypothesis of scale separation is verified up to moderate elasticity, as checked
by numerical integration of the exact linearized equations by the Arnoldi method.
Finally, it is shown that the addition of a stress diffusivity counteracts the effect of
elasticity, in agreement with simple physical arguments.

1. Introduction
Flow instabilities are a classical subject in fluid dynamics (Drazin & Reid 1981)

and the theoretical study of their occurrence in polymer solutions and melts is of
paramount importance for several industrial applications (see e.g. Petrie & Denn 1976;
Larson 1992; Shaqfeh 1996). A satisfactory understanding of these flow transitions
entails taking account of the viscoelastic behaviour of such fluids.

A spectacular consequence of viscoelasticity is the drag reduction effect: addition
of minute amounts (a few tenths of p.p.m. in weight) of long-chain soluble polymers
to water leads to a strong reduction (up to 80%) of the power necessary to maintain a
given throughput in a channel (Toms 1949; Lumley 1969; Virk 1975). Despite the vast
number of studies on the subject, the understanding of drag reduction by polymers
is still incomplete (Lumley 1969; Virk 1975; Nadolink & Haigh 1995; Sureshkumar,
Beris & Handler 1997; Sreenivasan & White 2000).

Recently, some theoretical works have been aimed at establishing a link between
drag reduction and the stability properties of the flow (Govindarajan, L’vov &
Procaccia 2001; Stone, Waleffe & Graham 2002). Our goal here is to give further
evidence that the seed of drag reduction is found at the very initial stage of the
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Figure 1. The stability portrait as predicted by multiple-scale analysis (solid line) and
computed by numerical solution of the exact linearized equations (triangles). In the region
denoted by U the flow is unstable, in that denoted by S it is stable. Inside the area denoted by
CSL the flow is stable with respect to large-scale perturbations, but unstable with respect to
generic perturbations.

successive instabilities which lead to a fully developed turbulent regime. In this frame-
work, the possible occurrence of drag reduction can be detected by investigating how
the stability of the flow changes upon polymer injection.

The basic flow we focus on is the extension to viscoelastic fluids of the well-
known Kolmogorov flow (Arnold & Meshalkin 1960). Boffetta, Celani & Mazzino
(2004) have shown that the fully developed turbulent regime of this flow displays drag
reduction. Similarly to the Newtonian case (Meshalkin & Sinai 1961), the evolution of
large-scale perturbations – the most unstable ones for moderate fluid elasticity – can
be formally described by an effective viscous dynamics. Instabilities are thus associated
with the loss of positive definiteness of the eddy-viscosity tensor, whose analytical
expression can be explicitly derived from the equations of motion by means of
multiple-scale analysis (Bensoussan, Lions & Papanicolaou 1978). In the Newtonian
case, the eddy-viscosity tensor is a function of the Reynolds number, Re, and long-
wave transverse instabilities occur above the threshold Rec =

√
2 (Meshalkin & Sinai

1961). In the viscoelastic case studied here, the effective viscosity depends on both the
Reynolds and the Deborah, De, numbers. (The latter is related to the typical polymer
relaxation time.) The boundary between stable and unstable regions in the Re–De
phase space is determined by the parameter values such that the viscosity tensor loses
its positive definiteness.

We anticipate our main result in figure 1, showing the phase-space portrait obtained
by multiple-scale methods (see § 4). For moderate De, the critical Reynolds number
is an increasing function of the Deborah number: this demonstrates the stabilization
of the flow field induced by the polymers (Govindarajan et al. 2001; Stone et al.
2002). The asymptotic result obtained for large-scale perturbations is confirmed by
the numerical solution of the full linear stability problem (see § 6). Discrepancies in
figure 1 between perturbative and numerical results are due to lack of scale separation,
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i.e. instabilities occurring at small or moderate scales, which cannot be captured by
multiple-scale methods.

2. The Oldroyd-B model
The Oldroyd-B model is based on the assumption that a polymer solution can be

treated as a dilute suspension of elastic dumbbells, i.e. pairs of microscopic beads con-
nected by harmonic springs (Bird et al. 1987). The elastic constant of the spring is in-
versely proportional to the typical polymer relaxation time τ , controlling the response
of the polymers to the stretching effects exerted by the local shear in the flow.

The distance between the two beads, here denoted by R, evolves according to the
stochastic equation

Ṙ = (R · ∂)u − 1

2τ
R +

√
R2

0

τ
ξ . (2.1)

On the right-hand side, the first term is the stretching/compression term, originating
from the spatial variation of the flow experienced at R. The second is a relaxation
contribution, where one considers only the largest – and thus the most effective in the
interaction with the flow – characteristic time τ . The last term, ξ , is a white-in-time
random process mimicking the effect of thermal noise on the polymers. R0 denotes the
equilibrium spring length, in the absence of advecting flow. This description remains
valid and no other physical effects (such as the nonlinearity of the springs) need to
be taken into account as long as we consider moderate polymer elongations.

Averaging (2.1) over the statistics of the thermal noise ξ , the following evolution
equation for the conformation tensor σ ≡ 〈RR〉/R2

0 is obtained:

∂tσ + (u · ∂)σ = (∂u)T · σ + σ · (∂u) − 1

τ
(σ − �), (2.2)

where (∂u)αβ ≡ ∂αuβ and tr∂u = ∂ · u = 0.
The dynamical effect of the polymers on the flow is due to the elastic contribution

to the stress tensor. In the Oldroyd-B model (see e.g. Bird et al. 1987), that is for
Hookean springs, this contribution per unit density is

T =
ν(1 − β)

τ
(σ − �), (2.3)

where ν is the total kinematic viscosity of the solution, νβ and ν(1 − β) are the
contribution of the solvent and of the polymers to the total viscosity, respectively.
Here we have introduced the dimensionless parameter β = ηs/(npkBΘτ + ηs), np being
the polymer concentration, kB denoting the Boltzmann constant, Θ the temperature
and ηs the dynamic viscosity of the solvent. The resulting momentum equations are

∂t u + (u · ∂)u = −∂p + νβ∂2u +
ν(1 − β)

τ
∂ · (σ − �) + f . (2.4)

3. Basic equilibrium state
As a first step in investigating the effect of polymers on the stability of the flow, we

need to find a basic equilibrium state that will then be perturbed and the resulting
perturbation growth evaluated exploiting a multiple-scale analysis.

Finding a basic equilibrium state for a generic forcing f is already a formidable
problem for the Navier–Stokes equations without polymers. The task is further
complicated here by the additional term in (2.4) and the coupling with (2.2).
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The problem simplifies for f ≡ (f (z), 0, 0) that induces a parallel flow U = (U (z),
0, 0), trivially annihilating the nonlinear term in (2.4). A further substantial simpli-
fication is introduced by the viscoelastic version of Squire’s theorem (Squire 1933),
which states that for parallel flows the most unstable perturbations are two-dimen-
sional. We shall therefore restrict consideration to the two-dimensional flow (ux, uz),
without prejudicing generality. We further specialize by assuming f (z) = F0 cos(z/L),
producing the well-known Kolmogorov flow (Arnold & Meshalkin 1960) U (z) ≡
ux(z) = V cos(z/L), uz = 0.

The conformation tensor at equilibrium has then the form

σ =

(
1 + 2τ 2(∂zU )2 τ∂zU

τ∂zU 1

)
=




1 + 2τ 2 V 2

L2
sin2

(
z

L

)
−τ sin

(
z

L

)

−τ
V

L
sin

(
z

L

)
1


 , (3.1)

and F0 = νV/L2.

4. Multiple-scale analysis
Let us now consider the linearized equations for the system of perturbations

(w, q, ζ ) of the basic state (u, p, σ ). Equations (2.2) and (2.4), together with the
incompressibility condition, lead to

∂ · w = 0, (4.1)

∂tw + ∂ · (uw + wu) = −∂q + νβ∂2w + ν (1 − β)τ−1∂ · ζ , (4.2)

∂tζ + ∂ · (uζ + wσ ) = (∂u)T · ζ + (∂w)T · σ + ζ · (∂u) + σ · (∂w) − τ−1ζ . (4.3)

We shall study the behaviour of perturbations with a characteristic length scale much
larger than L, the periodicity of the basic flow. The ratio of small to large scales will
be denoted by ε. In the spirit of multiple-scale expansions (Bensoussan et al. 1978),
we introduce a set of slow variables (x̃ = εx, t̃ = ε2t) in addition to the fast variables
(x, t) of evolution of the basic flow. The scaling of the slow time t̃ is suggested
by physical reasons: we are expecting a diffusive behaviour at large scales and the
relation between space and time is thus assumed to be quadratic.

The multiple-scale technique (Bensoussan et al. 1978) treats slow and fast variables
as independent, in order to capture the secular effects shaping the macroscopic
dynamics. The differential operators appearing in (4.1)–(4.3) transform according to
the chain rule as

∂i → ∂i + ε∂̃i, ∂t → ∂t + ε2∂̃t , (4.4)

where i = 1, 2 denotes x and z. In the following, we assume that the amplitude of the
fields in (4.1)–(4.3) are small enough to neglect nonlinear effects (their analysis will
be reported elsewhere). The amplitudes can then be rescaled out so that the fields w,
q and ζ are expanded as

w = w(0)(z, t, x̃, z̃, t̃) + εw(1)(z, t, x̃, z̃, t̃) + ε2w(2)(z, t, x̃, z̃, t̃) + . . . ,

q = q (0)(z, t, x̃, z̃, t̃) + εq (1)(z, t, x̃, z̃, t̃) + ε2q (2)(z, t, x̃, z̃, t̃) + . . . ,

ζ = ζ (0)(z, t, x̃, z̃, t̃) + εζ (1)(z, t, x̃, z̃, t̃) + ε2ζ (2)(z, t, x̃, z̃, t̃) + . . . ,


 (4.5)

where all the functions have the same periodicity as the basic state.
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Figure 2. The stability diagram obtained by multiple-scale analysis for (a) β = 0.77 and
(b) β = 0.167, with the notation of figure 1. Higher β corresponds to very low polymer
concentrations while lower β means high concentrations.

Inserting (4.5) into (4.1)–(4.3) and exploiting (4.4), we end up with equations in
which both fast and slow variables appear. By a further average over z, we obtain a
set of equations involving large-scale fields only, i.e. depending on x̃ and t̃ .

Using incompressibility, the large-scale velocity perturbations 〈w(0)〉 can be
described via the large-scale stream function Ψ (x̃, z̃, t̃) as〈

w(0)
x

〉
= ∂̃zΨ,

〈
w(0)

z

〉
= −∂̃xΨ. (4.6)

The evolution equation for Ψ is obtained as a solvability condition (Fredholm
alternative) at order ε2. After lengthy, but straightforward, algebra we obtain

∂̃t 
̃Ψ = ναβ∂̃
2
α∂̃

2
βΨ, (4.7)

where ν = ν� + νe, and

νe
xx =

V 2{−L2 + ν(1 − β)τ [3 + (1 + 2β)(ντ/L2)]}
2ν

, νe
zz = 0,

νe
xz = νe

zx =
V 2{7L2 + ν(1 − β)τ [−17 + (7 − 10β)(ντ/L2)]}

2ν
+ ν.

The perturbations in (4.7) decay if the operator ναβ∂̃
2
α∂̃

2
β is negative. The condition of

stability of the system is obtained by introducing the Reynolds number Re =V L/ν,
the Deborah number De= V τ/L and rewriting (4.7) in Fourier space:

(2−Re2β2 +3(1−β) De Re+(2β +1)(1−β)De2)s2 +(4+7 Re2 +17(β −1) De Re

+ (10β − 7)(β − 1) De2)s + 2 > 0 ∀s � 0. (4.8)

Here, s1/2 = tan θ , and θ is the angle between the perturbation and the basic flow, i.e.
θ =0 corresponds to longitudinal perturbations, θ = π/2 to transverse perturbations.
The stability diagram in the Re–De plane is given in figure 2 (note that the topology
of the phase space changes above βc ≡ 7/10).

Two types of instabilities are predicted by our multiple-scale analysis:
(i) Hydrodynamic-like transverse instabilities take place for sufficiently large values

of the Reynolds number, that is above the upper critical line in figure 2(a). In
particular, we observe that the critical Reynolds number is an increasing function
of the Deborah number: the elastic component tends to stabilize the flow. We can
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interpret such behaviour as a prelude to the drag reduction effect observed in the
fully turbulent regime (Boffetta et al. 2004). The lowest critical Reynolds number
for such instabilities is attained for the Newtonian case (De = 0), where we recover
the well-known result that the Kolmogorov flow is linearly stable below Rec =

√
2

(Meshalkin & Sinai 1961).
(ii) Purely elastic instabilities emerge for sufficiently high values of the Deborah

number and small Reynolds numbers (bottom-right region of figure 2a), that is
instabilities that arise for purely elastic effects. Those instabilities were discussed in
Shaqfeh (1996) and Groisman & Steinberg (1996, 1997, 1998a, b, 2004) for curvilinear
streamlines. The present case is, to our knowledge, the first evidence of elastic instabili-
ties for rectilinear streamlines.

Note that in this case the direction of the most unstable mode is at a small angle
with respect to the basic flow, at variance with the purely hydrodynamic transverse
instabilities.

5. Generalization to finite Schmidt numbers
Adding a stress diffusion term κ∂2σ to the equation of motion for the conformation

tensor (2.2) was suggested by Sureshkumar & Beris (1995b) to avoid Hadamard
instabilities which may emerge when (2.2) and (2.4) are integrated numerically. Such
instabilities are triggered when the positive definiteness of the conformation tensor is
lost due to the accumulation of numerical errors. How does the artificial diffusivity
alter the stability portrait? We can address this question by exploiting the multiple-
scale expansion to obtain an analytical answer.

The results shown in the previous section have been obtained for an infinite Schmidt
number Sc= νβ/κ , where we recall that νβ is the solvent viscosity and κ the stress
diffusivity. The latter appears on the right-hand side of (4.3) as an extra term κ∂2ζ .
The analysis proceeds exactly as in the case κ = 0. A source of technical difficulty
is that the equations stemming from (4.3) now have a differential character, rather
than algebraic as for κ = 0, making the computation more cumbersome and tedious.
However, the final result is still a diffusion equation like (4.7), with an eddy-viscosity
tensor dependent on the Schmidt number. The resulting stability portrait for the
hydrodynamic regime is shown in figure 3 for two different values of Sc. The case
Sc= ∞ (i.e. κ = 0) has been treated in the previous section, where it has been shown
that the multiple-scale expansion provides reliable predictions up to Deborah numbers
of order unity.

From figure 3 it is evident that the presence of the diffusivity reduces the stabilizing
action of the polymers. In plain words, a non-zero stress diffusion in the equation of
motion for the conformation tensor brings the system back toward the Newtonian
behaviour. The physical reason is quite intuitive: the presence of a non-vanishing
diffusivity tends to destroy the alignment between the stretching directions and the
polymers, wiping out their capability to interact with the flow by selecting preferential
orientations and making them behave, in practice, as point particles. The tendency to
reach this limit for Sc 	 1 has been observed in our computations and simulations
(not shown).

6. Numerical analysis
For a plane parallel flow such as the basic flow of § 3 it is possible to compute

the exact, linear, rate of growth of a perturbation with arbitrary wavenumber, by
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Figure 3. The stability portrait for finite Schmidt numbers. Symbols represent the numerical
result based on the Arnoldi method, whereas solid lines are the prediction for large-scale
instabilities.

means of a procedure that closely resembles the derivation of the Orr–Sommerfeld
equations. Additionally, this will allow us to check if the first unstable modes are
localized at the large scales and the onset of the instability of the laminar flow can
be captured by the multiple-scale analysis developed in § 4.

The starting point is again the set of equations (4.1)–(4.3). Neglecting the nonlinear
terms we have to deal with a set of linear partial differential equations with
periodic boundary conditions. The first step is to take the Fourier transform of
the perturbations w and ζ (denoted, respectively, by ŵ and ζ̂ ), e.g.

wx = ∂zψ 
→ ŵx = ikze
i(k · x−ct)ψ̂(kx, kz), (6.1)

wz = −∂xψ 
→ ŵx = −ikxe
i(k · x−ct)ψ̂(kx, kz), (6.2)

ζij 
→ ei(k · x−ct)ζ̂ij (kx, kz). (6.3)

Accordingly, the equation for the vorticity, ω̂ ≡ (k2
x +k2

z )ψ̂ , and for ζ̂ are easily derived
from (4.1)–(4.3). For the sake of brevity, we report here the equation for ω̂ only:

− iV kx

2L2

[
L2k2

x + (Lkz − 1)2 − 1
]
ψ̂(kx, kz − 1/L) − νβ

(
k2

x + k2
z

)2
ψ̂(kx, kz)

− iV kx

2L2

[
L2 k2

x + (L kz + 1)2 − 1
]
ψ̂(kx, kz + 1/L) +

ν (1 − β) kx kz

τ
ζ̂xx(kx, kz)

− ν (1 − β)

τ

((
k2

x − k2
z

)
ζ̂xz(kx, kz) − kxkzζ̂zz(kx, kz)

)
= −i c

(
k2

x + k2
z

)
ψ̂(kx, kz). (6.4)

Equations with a similar structure hold for ζ̂ as well. The complete set of equations
constitutes an infinite hierarchy of linear algebraic equations with non-constant
coefficients, which shows a foliation in terms of kx . Upon truncating all modes
|kz| >kmax, for each kx , we end up with a closed linear system of 4(2kmax + 1) equations
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of the form

Aφ = cBφ, (6.5)

where φ = φp(kx) (p ∈ [1, 2kmax + 1]) is a vector constructed from ψ̂ and ζ̂ and A and
B are two (2kmax + 1) × (2kmax + 1) matrices. A particularly convenient choice is to
arrange the fields in the form

φ4kz+4kmax+1(kx) = ψ̂(kx, kz), (6.6)

φ4kz+4kmax+2(kx) = ζ̂xx(kx, kz), (6.7)

φ4kz+4kmax+3(kx) = ζ̂xz(kx, kz), (6.8)

φ4kz+4kmax+4(kx) = ζ̂zz(kx, kz), (6.9)

for kz integer and kz ∈ [−kmax, kmax]. With this choice, the matrix B turns out to be
diagonal and A is band diagonal: only (8/L) − 1 upper-diagonal and (8/L) + 2 sub-
diagonal survive. Note that these numbers do not depend on kmax. The matrix B has
no null diagonal elements, and can be inverted:

B−1Aφ = cφ. (6.10)

To obtain non-trivial solutions for φ, we are thus reduced to a standard eigenvalue
problem, whose eigenvalues, c(kx), give the dispersion relation.

An effective solution to our eigenvalue problem is to use Krylov subspace methods
for computing a subset of the eigenvalues. Here, we use the Arnoldi method,
which has been successfully applied to the linear stability of Newtonian coating
flows by Cristodoulou & Scriven (1988) and for viscometric viscoelastic flows by
Sureshkumar & Beris (1995a). This method consists of the generation, via a Krylov
sequence, of a system of reduced dimension whose eigenvectors approximate those of
the whole system. The Arnoldi method is the generalization to asymmetric eigenvalue
problems of the Lanczos algorithm for symmetric matrices, which is proved convergent
(see e.g. Parlett 1980). This procedure yields the whole spectrum of eigenvalues c(kx)
for every kx . The stability region for a given set of parameters is defined by the
condition max{Im[c(kx)]} < 0 for every kx .

To obtain the results reported in figures 1 and 3 (triangles) we worked in a bi-
periodic square box of side 2π with L = 2π/64 and kmax = 512. Larger values of both
L−1 and kmax did not produce appreciable differences in the results.

Some remarks on figure 1 are useful. Up to De � 2.3 (for β = 0.77), the marginal
curve obtained by the multiple-scale expansion is practically indistinguishable from
the one obtained by the numerical solution of the full linearized equations. For larger
Deborah numbers, multiple-scale analysis fails; this is the fingerprint of the lack of
scale separation between the basic Kolmogorov flow and the perturbations. For large
elasticity the leading instabilities do not occur at large scales: this is the realm of
elastic instabilities, the first step toward the elastic turbulence regime (Groisman &
Steinberg 2000).

7. Conclusions
We have investigated the linear stability of a viscoelastic fluid flowing in a channel

with periodic boundary conditions. The flow is maintained by an external source
and, for the particular choice f = (F0 cos(z/L), 0), it gives rise to the well-known
Kolmogorov flow. Under the hypothesis that the most unstable perturbations evolve
on scales much larger than L, we exploited an asymptotic perturbative strategy (the
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multiple-scale expansion) to obtain an effective equation for the temporal evolution
of the large-scale perturbation. The stability problem is thus reduced to the study of
the sign of the eddy viscosity appearing in the large-scale equation.

Two different kinds of instabilities are captured by the multiple-scale expansion:
(i) hydrodynamic-like instabilities that, in the limit of small elasticity, give the well-
known Rec =

√
2 corresponding to the Newtonian limit of the theory; (ii) purely

elastic instabilities occurring for large values of the elasticity. The major effect of
elasticity on hydrodynamic instabilities is to increase their critical Reynolds number.
In plain words, polymers stabilize the flow, a prelude to drag reduction (Govindarajan
et al. 2001; Stone et al. 2002).

Our results hold for finite Schmidt numbers as well. On decreasing Sc, the effect
of stabilization reduces and for Sc → 0 polymers behave as a suspension of spherical
particles. Finally, our perturbative predictions have been corroborated by numerical
analysis carried out on the original differential equations for the perturbations, by
means of the Arnoldi method. The hypothesis of scale separation is verified up to
Deborah numbers of order unity. For larger De, scale separation does not hold
and multiple-scale methods fail. Nonetheless, at least qualitatively, the occurrence of
purely elastic instabilities is captured by the asymptotic expansions.

This work has been supported by Cofin 2003 “Sistemi Complessi e Problemi a Molti
Corpi” (AM), and by the European Networks “Stirring and Mixing” HPRN-CT2002-
00300 (AC) and “Non-ideal turbulence” HPRN-CT-2000-00162 (MV). Numerical
simulations have been performed at CINECA (INFM parallel computing initiative).
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